
Tannaka-Krein Duality for Association Schemes 

Eiichi Bannai 
Department of Mathematics 
The Ohio State University 
Columbus, Ohio 43210 

Submitted by N. Biggs 

ABSTRACT 

A duality theorem is formulated for noncommutative association schemes. This 
duality theorem contains as special cases (1) the Delsarte-Tamaschke duality theorem 
(which was essentially obtained by Kawada in 1942) for commutative association 
schemes, and (2) the Tannaka-Krein duality theorem for arbitrary finite groups. 

INTRODUCTION 

An association scheme of class d is a pair x = (X, 9% ) consisting of a finite 
set X of n points and a set %={Ro,R1,...,Rd} of relations R,#0 which 
satisfy: 

(1) R, = {(x, x)(x E X} is the identity relation. 
(2) For every x, IJE X, (x, y)E Ri for exactly one i. 
(3) For each i E (0, 1, . . . , d}, ‘Ri[: = {(y, x)1(x, y)~ Ri}] = Ri for some i. 
(4) For each i, i, k E (0, I,. . . , d}, I{z~Xl(r,t)~Ri, (Yyz)ERi}l is 

constant ( pjk) whenever (x, y ) E R,. 

In some literature the definition of association scheme is slightly different. In 
[4], pfk = plk is assumed, and in [2] more strongly ‘Ri = R, is assumed. The 

present definition is equivalent to a homogeneous coherent configuration in 
the sense of Higman [7]. 

Let Ai (i=O,l,..., d ) be the adjacency (n by n) matrix with respect to 
the relation Ri. Then the algebra ??l = (A,, A,,...,A,) spanned by the A, 
over C is an algebra of dimension d + 1, and is called Bose-Mesner algebra or 
Hecke algebra. The case when the algebra ‘U is commutative has already been 
extensively studied. If ‘II is commutative, then it is well known that 8 has a 
unique set of primitive idempotents E,, E,, . . . , E, that also becomes a basis of 
the algebra ‘21, and a duality theorem between the two bases {A i} and {E,} is 
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well known. (Cf. [4], [ll], [8].) Note that in terms of Delsarte [4] this is a 
duality between the ordinary multiplication and the Hadamard multiplication 
(i.e., pointwise multiplication) in the algebra %, which is a subalgebra of the 
full matrix algebra. In other words, the Ai are characterized as the unique set 
of primitive idempotents in the algebra % whose multiplication is defined by 
the Hadamard multiplication. It is also interesting to note that this duality 
was obtained as early as 1942 by Kawada [8] in a deeper way. Namely, the 
existence of an association scheme was not necessary, and this duality was 
formulated for those algebras (called C-algebras by Kawada) whose property 
was extracted from that of the Bose-Mesner algebra. We will refer this duality 
as Delsarte-Tamaschke-Kawada duality in what follows. 

Now it seems natural and interesting to ask what happens if the algebra dl 
is not commutative. The purpose of this paper is to answer this question, 

Krein [9] (see also [6, $301) interpreted the Tam&a duality (for a 
compact group) more precisely, by introducing a dual object, which is now 
called the Krein algebra. In this paper we will follow the treatment by Krein, 
and we will construct an object similar to the Krein algebra as a dual object 
for the algebra ‘)1. Then we recover the structure of algebra 91 by taking the 
multiplicative functionals of the new algebra. This mechanism is very similar 
(and almost identical) to the proof of Tannaka-Krein duality by Krein [9] (see 
[6]), and also the calculations involved here are essentially already known (see 
[ll], [7]). However, I hope that this formulation is new and that it makes the 
meaning of Tan&a-Krein duality more clear. 

This new duality contains both Delsarte-Tamaschke-Kawada duality (for 
commutative association schemes) and Tam&a-Krein duality (for finite 
groups) as special cases. The first one is obtained by adding the extra 
assumption of commutativity, and the second one corresponds to our duality 
for the algebra attached to the double coset space H\G/H when we 
specialize to H = 1. 

It would be interesting to know whether this duality is generalized to 
nonfinite case, in particular for H \G/H with G any compact topological 
group and H any closed subgroup of G. 

The content of this paper was presented as a part of my talk at the AMS 
San Francisco meeting in January 1981 entitled “McKay’s observation, 
Delsarte’s theory on association schemes, and a duality theorem of the 
character table of a finite group” (Abstract 783-05-57; see also [l]). During 
and after the talk, several people pointed out that similar results had recently 
been discussed in harmonic analysis ([5], [lo], etc.). I have checked those 
references, and so far have been able to find only those results corresponding 
to Delsarte-Tamaschke-Kawada duality, i.e. the commutative case, ignoring 
measure theoretical complications. However, I think that it would have been 
easier for experts in harmonic analysis to formulate the duality presented here 
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(if they wished), and that the reason why they did not mention this duality is 
perhaps that they are rather interested in general results for H\G/H for any 
compact group G, but the situation is quite difficult and unclear if G is not 
finite. Anyway, this connection has made me aware that the concept of 
hypergroup in harmonic analysis is essentially the same as that of association 
scheme (when we ignore measure theoretical complications), and that there 
are close connections between these two theories. 

1. DUALITY THEOREM 

Let x = (X, {Ri}) be a noncommutative (i.e., not necessarily commuta- 
tive) association scheme of class d, and let 8 = (A,, A i, . . . , Ad) be the 
Bose-Mesner algebra, a subalgebra of M,(C). Since $I is closed under the 
conjugate-transpose map, % has no nontrivial left nilpotent ideal, and so % is a 
semisimple algebra. Thus 9I is a direct sum of complete matrix algebras 
C, [ = M,,(C)] over C: 

~=c@c,cB ... CBC m 

with d + 1= Zy!Oez. The algebra % is completely reducible, that is, there is a 
nonsingular matrix UE M,(C), and even a unitary one if we need that, such 
that 

u-‘W=diag(Ad+), Al(~),...rAl(~) ,..., A,(+),...,A,(+)) 
Z” = 1 il -,3 

for all +E rU, where A,, A,, . . . , A,, are inequivalent irreducible representa- 
tions of VI such that the degree of hi is ei. So we have n = Zy!n=oei.zi. We write 

Since {A,, Ai,..., Ad} is a basis of Z, the function ari on 9I is determined by 
the values of the ay,(Ak). Let us set Y={A,, A,,...,A,}, and let 5!I# be the 
set of all (C-valued) functions on Y generated by the ari (with 0 < v < m, and 
1 G i < e,, l< i < e,). Then by a theorem of Frobenius and Schur [3, (27.3)] 
the uyi are linearly independent on Y, and so %# is the set of all functions on 
Y (or see Lemma 1 below). The 8* has a natural multiplication operation, 
namely pointwise multiplication, and 8* becomes a commutative algebra 
with respect to this pointwise multiplication. The algebra %* (with the 



86 EIICHI BANNAI 

specified basis ali) plays the same role as the Krein algebra does in Tannaka- 
Krein duality (cf. [6, $301, [9]). For an algebra, say A, a linear function from A 
to C is said to be a linear multiplicative functional if 

for all x and y in A. For an algebra A, let HA be the set of all linear 
multiplicative functionals of A. 

Now our duality theorem is formulated as follows. 

THEOREM 1. Let 9l = (A,, A,,..., Ad) be the Bose-Mesner algebra for 
an association scheme of class d. Let ‘21# with the specified basis ayi 
(O<v<m and l<i<e, and l<j<e,) be the abovedefined algebra for 3. 
Let H,* be the set of all linear multiplicative function& of a*. Then HgxP is 
identified with the set Y = {A,, A,. . . Ad}. For cp and 4 in H,* let us define 
the product q~# by 

Then ‘p# is a linear combination of elements in Hsl~, and this algebra 
structure on H,s is isomorphic with that of the original Bose-Mesner algebra 
5%. Precisely speaking, if A,, A,, and A,, are the elements in Y corresponding 
to ‘p, 4, and p respectively, then 

if and only if 

2. PROOF OF THEOREM 1 

1. 
First we show that HVIP is identified with the set Y. As we mentioned 

before, 2l# is the set of all functions on Y, and so we have clearly 2t# = C,( Y ), 
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because Y is a finite set. Therefore it is known that the structure space (i.e. 
H,*) is identified with the set of evaluation functions by an element in Y. 
(The reader is referred to Appendix C in [6], in particular (C.29) (C.30), and 
(C.32) on pp. 482-483 in [6, Part I].) 

'i+ 

2. 
To prove the second part, we have only to show that the relation (1.2) 

implies the relation (1.3). That is to say, we have only to show that 

for all aTi. 
Now we introduce the following notation. Let 

%Eeg 0 ko 
G?f 

z= T= 

0 * z,E,:, 0 

(2.1) 

(where E, is the identity matrix of size 1) with ki = pie. Also, set 

F = (GUi))(“,.,p),i 

and 

F* = (a’gS)(Ai,))(y.a,a,, i 

where the triples (v, a,/?) with a, /I = l,..., e,, v = O,l,..., m in their lexico- 
graphic order are used as row indices, and the i = 0, 1, . . . , d as column indices. 
Then we have the following: 

LEMMA 1 (Schur relations). 

(i) F’ZF* = nT. 
(ii) F*ZF’= nT. 
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Proof In the special case when the algebra !?I is the center of the group 
ring of a finite group, these relations are the orthogonahty relations of 
irreducible characters written in a slightly different form from usual. n 

These relations are well known and called Schur relations. The reader is 
referred to [7, II]. Note that (i) is (3.12) in [7] {and essentially the same as 
(2.3) in [ll]), and (ii) is (3.11) in [7] ( an d essentially the same as (2.4) in [ 111). 

LEMMA 2. Let 

(1.2) 

Then the structure constant pzP is given by 

Proof. Multiplying (1.2) by A,, we have 

A&A,, = ; p$APAP,. 
fi=O 

(2.3) 

Now apply z,f,, to both sides of (2.3). This is essentially the same as taking 
the trace of (2.3). Then applying Lemma l(ii), we get the desired result. (This 
calculation is essentially done in [ll, p. 2991.) n 

3. Completion of the Proof of Theorem 1 
To complete the proof of Theorem 1, we have only to show that 

for all aIi. That is, we have only to show that 

(2.4) 
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This is immediately verified by using Lemma 2 and Lemma l(ii), because 

89 

by Lemma l(ii). 
Thus the proof of Theorem 1 has been completed. 

3. REMARKS 

(i) It is easy to see that if 5% is commutative, then all e, = 1 and we get the 
Delsarte-Tamaschke-Kawada duality. 

(ii) Let G be a finite group, and let H be a subgroup. Then as is well 
known, the set of double cosets H \G/H has the structure of a (not necessary 
commutative) association scheme. It is clear that the original Tannaka-Krein 
duality is essentially our duality for H \G/H when we specialize to H = 1. [An 
important feature of the original Tannaka-Krein duality is that the product cp$ 
in our (1.3) becomes a single element in Hp.] 

(iii) As Kawada [8] proved his duality theorem for C-algebras (in his 
terminology), our duality theorem can also be formulated for algebras which 
do not necessarily come from an association scheme. 

(iv) As we mentioned in the Introduction, it would be interesting to know 
whether we can obtain similar duality theorems to ours for H\G/H with a 
nonfinite compact topological group G and a closed subgroup H. 
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